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Abstract

It is shown that the autoregressive, Markovian minification processes
introduced by Tavares and Sim can be extended to marginal distributions
other than the exponential and Weibull distributions. Necessary and suffi-
cient conditions on the hasard rate of the marginal distributions are given
for a minification process to exist. Results are given for the derivation of
the autocorrelation function; these correct the expression for the Weibull
given by Sim. Monotonic transformations of the minification processes are
also discussed and generate a whole new class of autoregressive processes
with fixed marginal distributions. Processes generated by a maximum op-
eration are also introduced and a comparison of three different Markovian
processes with uniform marginal distributions are given.
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1 Introduction

In a series of papers Tavares(1977,1980a,b) introduced two stationary Markov

processes with similar structural form which he had found useful in hydrological

applications. The first process, a maximum process, has an extreme value or

Gumbel's marginal distribution, for which the density function is

fx(x) = feie' 2 > 0; -00 < x < oo (1)



and the hazard rate is

AX) = fx(z)/sx(z) =I-- e l (i - (2)

where Sx(x) = 1 - Fx(x) = P(X > x) is the survivor function. The second

process, a minimum or minification process, has negative exponential marginal

distribution for which

fx(.)=,6e-6 x>0,#>0 (3)

and

AX W P. (4)

This second process is also investigated by Daley, Chernick and Littlejohn(1988)

who demonhtrate some very interesting theoretical properties, in particular that

the process is. a time reversed version of the linear, additive EAR(1) model of

Gaver and Lewis(1980). Further, Sim(1986) has shown that the structural form

of this minification process of Tavares will also accommodate a Weibull(g,#)

marginal distribution. The Weibull (k, P) density function is

fx(z) = z.'3'-ie-(fl)- x > oc > o;P > 0 (5)

and

) x(Z) = /,6x'-. (6)

Thus the hazard rate is a power law function, decreasing from infinity to zero

as x increases when K < 1, and increasing monotonically from zero to infinity as

x increases when K > 1. For r. = 1 this is an exponential distribution.

This second process is called a minification process because the observations

{X,,}, where the X,'s are positive valued, are generated by the equation

X. = K min(X., Z._1 ). (7)

Here K > I is a constant, and {Z,} is an innovation process of independent

and identically distributed random variables chosen to ensure that {X,} is a
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stationary Markov process with marginal distribution function Fx(x). In the

negative exponential case ( 3) it is found that the autocorrelation function of

the process has the familiar geometrically decreasing form of an autoregressive

process of order one, AR(1), i.e., Px(J) = p', i = 1,2,....

The purpose of this work is to explore the generality of ( 7) in two distinct

ways. First we attempt to determine the range of possible marginal distribution

functions Fx (x) for non-negative X,. We shall see that it is possible to specify

fairly simple conditions in terms of the hazard function of the distribution which

determine whether that distribution may be used as a marginal distribution in

( 7). The second approach to this investigation arises from the fact that the

structure of ( 7) is so simple that many of the important, features of the process

may be invariant under insLantaneous monotone transformation. In this way,

we may derive simple Markov processes based on ( 7) but with any marginal

distribution we wish, even if it is one for which a minimization process does not

exist. Moreover ve may also immediately deduce many of the basic properties

of the resulting process directly from our results.

Sequences of non-negative random variables find applications in many fields.

The work of Tavares was motivated by hydrological considerations, for example

modelling of run-off data. This data tends to have long tails and thus cannot be

modelled by exponential processes such as the random linear coefficient EAR(1)

processes of Gaver and Lewis (1980). (See Lewis, 1985, for a summary of these

models). Weibull or extreme-value random variables are commonly used for

modelling the marginal distribution functions of run-off series, but processes with

these marginal distributions cannot be generated with linear random coefficient

models. Thus the minimization processs are important as a source of time series

for such processes.

Another case of interest is time series of wind velocity magnitudes. These

again are positive valued random variables and their simulation is important

for driving, for example, models of temperature mixing in the ocean. Brown,
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Katz, and Murphy (1984) note that although studies have shown that Weibull

marginal distribution have been found adequate for wind velocity magnitudes,

unfortunately, "no time series models have been rigorously developed for random

variables possessing a Weibull distribution ." They therefore resort to transfor-

mations of the data. Wind power data, being the square of wind velocity data,

is even more likely to need very long tailed marginal distributions.

Again, in reliability studies, sequences of times-between-failures are corre-

lated and models are chosen on the basis of a generally non-constant marginal

hazard rate. We show how it is possible to generate such sequences with mini-

fication processes, for example with the familiar 'bath-tub' hazard rate. An

analytical representation for this type of hazard rate is given in Gaver and

Acar(1979).

2 The General Minification Process.

For ths moment we make no assumptions about the marginal distribution of

{X,,} or of {Z,} save only to assume that a distribution can be found for Z,,

so that {X,,} is a stationary Markov process given by (7) . Suppose now that

the survivor function of the non-negative valued random variable X, is given by

Sx(x) = P(X > x). It is easily verified from (7) that the survivor function of

Zn must satisfy

sz(x) = Sx(Kx)/Sx(x) > 0; K> 1 (8)

This shows that K must be greater than one; otherwise, since Sx(z) is generally

decreasing, the function Sz(x) would be greater than one in value for some x.

Note that for the general process we may write the survivor function Sx(z) in

terms of the cumulative hazard Ax(x), or the hazard rate, \x(z), thus: Sx(z) =

exp f-Ax(x)] = exp [- fo Ax(t)dt]. Thus, equation (8) may be recast in terms

of hazard functions as follows:

Az(x) = fz(t)dt L f x(t)dt z> 0 (9)
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We now consider what is the set of possible marginal distributions for X. in

the general minification process ( 7). Clearly, a necessary and sufficient condition

for a distribution to be suitable for this purpose is that the right hand side of

(8) is a survivor function, or equivalently that the right hand side of (9) is a

cumulative hazard function. In the latter case, we require that - In Sz(z) -

Az(x) = f.fZ Ax(t)dt be a non-decreasing function of z, for all z > 0, and be

increasing for some z > 0. This is equivalent to

f {KAx(Ka) - Ax(s)} d8 > 0

for all z > y - 0, and positive for some z > y > 0, which reduces to

KAx(Ks) _ Ax(s) for all 8 > 0, with inequality for some 8 > 0. Multiply-

ing by s yields the alternative necessary and sufficient condition that

zAX(z) (10)

is a non-decreasing function of z, for all z > 0, and an increasing one for some

x > 0.

Now assume that (10) is true. Then as z --+ oo either (i) Sz(z) --* 0 or (ii)

S (x) --+ p, where pc(O, 1).

In case (i) Sz(z) is a proper survivor function and so the minification process

(7) can be constructed with the required marginal distribution for {X,} by using

an innovation process {Z,} whose survivor function is defined by ( 8).

In case (ii), Sz(z) is not strictly a proper survivor function having, in effect,

an atom of probability p located at infinity. Such a property would seem to

rule out this case from a practical point view. However, it is a property which

is readily interpreted in practice because of the form of ( 7). Simply, we may

rewrite ( 7) in the form

= KX.- with probability p (11)
SK min (Xn-,,, Z) with probability (1 - p)

and the "new" innovation r.v. Z is simply Zn conditional on Zn < oo. Thus,

Sz.(Z) - Sz(Z) -p (12)
5-p



In addition, although the form of (11) is different, of the process to be discussed

below can be derived similarly provided we work in terms of Sz(X) = p + (1 - p)

Sz.(z). Note that from (11) can see that sample paths of the process {X,)

will tend to exhibit a "runs up" type of behavior. This type of behavior is

characteristic of, for example, river flow data, but the geometric increase implied

by (11) may be too severe for general use.

3 Bivariate Distributions and Autocorrelations

Using ( 7) and (8) it is straightforward to show that the bivariate distribution

of any two values in the process has survivor function

Sx.,x._.(Y'X) = P(X, > Y, xj > X)

= P{X.-I > y/K,Z. > y/K,X._i > x}

from (7). By repeated use of (7) we get

Sx,,,X,,j(y, z) = SX(max (x,y/K')) Sx(y)/Sx (y/K')

f Sx(x)Sx(,)lSx (yIK') y <_ K) (13)

-. Sx(y) y > Kjx

Note also that this is a not an absolutely continuous distribution because,

from ( 3), there will be a non-zero value for

Pi = '(X" _-Z 4'X"-')
=~ (x -~ X~,)(14)

= P(Zi > Xo, Z 2 > KXo,...,Z2 > Kj-'Xo)

which may be evaluated as

TO Sx(Kjx) f~~z

Hb {S--'r }Ix(z)dz "  (15)

Hence, the bivariate distribution has probability pi on the line X. = KjX,-i

and probability (1 - p,) spread over the region defined by X, < K'X,-i with

survivor function given by (13). It is important to note that since the process



is Markov all distributional behavior is characterized by such bivariate distribu-

tions, especially the form for contiguous observations, i.e. k = 1.

In addition, note that the bivariate distributions of (Xn, X.-.) and (X, X.-)

differ only in that K in the former becomes K' in the latter. Thus, the bivari-

ate distribution of (X,,,X,-i) and its properties are easily derived from those

of (X,,X,- 1 ) by replacing K by K i . In particular, we are interested in the

autocorrelation function of the process {X,, }, i.e. Px(J) = corr(Xn, X,-j), j =

0, 1. Thus, if px(1) = r(K) then px(j) = r(Ki), j = 0,1 . This is a

useful property since we can now derive the autocorrelation function for any lag

j from px(l) alone.

Tavares (1980) claims to show that in the case where {X.} defined in (7)

has a negative exponential distribution the autocorrelation function of lag j is

given by px(j) = pi, where pi is defined by (14). In this negative exponential

case, pi = (1/K)'. Sim (1986) uses exactly the same argument in the case when

{X,} is marginally Weibull and again derives px(j) = (1/K)'. These results are

of particular interest since this geometric autocorrelation function is associated

with the well known autogressive process of order one, the AR(1).

Unfortunately, although the autocorrelation result is true for the negative

exponential case (as may be seen from Chernick, Daley, Littlejohn, 1988), the

proof indicated by Tavares does not appear to be valid and certainly does not

extend to the Weibull case, as Sim states. In general, pX(j) : p, although

equality holds in the negative exponential case. By considering E(Xn I X"_1),

we may show that for the general stationary process defined by (7)

E(X ,X,_,-) -z KE {X f sz(z)dz}. (16)

Using E{ K f X Sz(z)dz} = E(X) n ix, we may extend (16) to obtain an

expression for the covariance thus:

C(X,,X._) = KE {(X-mx) fo Sz(z)dz}. (17)
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Hence, px(1) may be obtained from (17) by dividing by Var(X,,), and px(j) may

obtained by replacing K in px(1) by K'. (In this context, recall that Sz(z)

is a function of K). The geometric autocorrelation for the negative exponential

case claimed by Tavares may be readily shown from (17). In passing, we note

that the autocorrelation function has this geometric form in general if and only

if px(1) = (1/K)' for some a > 0. The quanitity pi defined by (14) is also a

useful measure of dependence, although we do not consider it in any detail here.

The sequence {pj : j = 0,1,2,...} is the survivor function of the length, T say,

of runs of the form {X, KX, K 2X,..., KTX}, and so P(T > j) Pi.

4 Examples of Minificaton Processes

(i) A simple example of a distribution which cannot be the marginal distri-

bution for a minification process as defined by (7) is given by taking X

to be uniformly distributed over (0,1) with probability 0.5 and uniformly

distributed over (1,6) with probability 0.5. In this case

SX(' I - 0.5x 0< X<lI
)= 0.6-0.1z I<x<6

and it is a matter of straightforward calculation to show that if I < K < 3

then Sz as defined by (8) is increasing for all z in the interval (1/K, 1).

We may also verify that the condition given by (10) is violated.

(ii) An important but simple example of a minification process is provided by

the uniform distribution on (0,1). In this case, Sx(x) = 1 - z,0 < z < 1,

and zAx(x) = x/(1 - z) is clearly increasing so that (10) is satisfied.

Further, from (8)

1 - Kz 1sz(z) = o O< z (18)
1-z'

which is a proper survivor function and Z is given by Z = U/(K - 1 + U),

where U is uniform on (0,1). In eadition, the autocorrelation function

8



of {X,} can be derived from (11) and is found to be px(1) = 1/K, so

that Px(J) = (1/K)', j = 0, L.... Thus, this uniform process enjoys the

geometrically decaying autocorrelation of the AR(1) process. Processes

which are marginally uniform are important since the uniform random

variable X,, can be given any other distribution by means of the inverse

distribution function transformation. Thus, if we wish a random variable

Y with distribution functions Fy(y), we use Y = FI(X). This idea will

be discussed in more detail later.

(iii) It is clear from (10) that Xn defined by (7) may have any marginal distri-

bution whose hazard rate is itself non-decreasing, e.g. the uniform above, a

Gamma (tc,f) with m > 1 or a Weibull (tc, ) with x > 1. We consider now

a distribution whose hazard decreases over the sample space, the Weibull

(tcc) with ic < 1. This is detailed in Sim (1986), but we note here that

zA(x) =: c,'ax9 is increasing for all x, and so condition (10) is satisfied.

Further, Sz(x) = exp{-(K' - 1)(x)' } -- 0 as z - oo. Thus, the gen-

eral minification process (7) accommodates the Weibull distribution for all

r. > 0. However, as noted above, Sim's derivation of the autocorrelation is

wrong. He shows, correctly in this case, that pi = (1/K)', but px(J) : pi

in general. Using (17), it is possible to show that the form of px(1) for

genera! K cannot easily be derived. The case when c = 2 is tractable,

however, and in this case

PX(1) = 2 NK / -2 -  K~- 4K 4 /1

(iv) The Pareto distribution provides an example in which the form (11) is

required rather than (7). Here Ax(z) = a/(1 + z) with a > 0 a shape pa-

rameter, and condition (10) is again satisfied. However, Sz(x) = {(1 + x)

/ (1 + Kx)}a - K - ' as x ---, oo. Hence, the process {X,} with this

Pareto marginal distribution may be generated using (11) and (12) with

9



p = K and an innovation process (Z,,} whose survivor function is

{[K (1 + z) / (1 + Kz)]G - 1} / (KG - 1).

Again the autocorrelation funrction can be derived from (17) and we find

that, for o > 2,px(j) = (1/K)j,j = 0, 1. Thus, the Pareto, like the

uniform minification process, has the familiar geometric autocorrelations

of the AR(1) process.

(v) An interesting case is that of the so-called bathtub hazard rate (Gaver

and Acar, 1979), which we could model as A(z) = paPx -1 +fl+P-yP= P - '

with 0 < p < 1 < P. This models a situation where components have high

likelihood of early, infant failure, otherwise have a constant hazard rate

and then finally reach a "wear-out" state corresponding to the Weibull

distribution with P > 1. This is actually the hazard rate of a random

variable which is generated as the minimum of three independent ran-

dom variables, one being exponential(#), the others being Weibull(p,a)

and Weibull(P,-). Then zA(z) == paP 0 + fx + Pfp xP , which is clearly

increasing in x, so that a minification process exists. In fact

A = KAx(Kx) - A -(x) = p [KP - -1/P]PxPI

-(K -1) + P { [KP - I] /P}P - 1,

showing that Z is again a random variable with a bathtub hazard rate

and is easily generated as a minimum of two independent Weibull random

variables and an independent exponential random variable.

The form given by Gaver and Acar (1979) uses a Pareto distribution for

the early, decreasing hazard rate instead of the Weibull(p, o) here. As

we have seen in (iii) this will also be suitable for a minification process.

Although, in both the cases considered here, the process is easy to generate

the correlation structure is difficult to determine analytically.
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5 Monotonic Transformation of the Minification Pro-
cess

As noted in the introduction, one useful way to generalize the minification pro-

cess given by ( 7) is to start with the negative exponential marginal case, Tavares

(1980a, b), and take a monotonic transformation of each X,. Thus suppose g

is a monotone increasing function; then we define Y = g(X,) and Wn = g(Zn)

for each n. Recall that if X, is negative exponential of mean 1 then Z,, is also

negative exponential and of mean (K - 1)-.

It is straightforward to verify that the process {Yn} is stationary and Markov

and defined by

Y = rin (g [Kg- (Yn.-)] ,g [Kg-'(Wn)])
(19)

= g[Kg-1 min(Yn._1,W.)].

If g is monotone decreasing then we must replace min in (19) by max.

Note that by definition Xn is negative exponential of unit mean so that if

Yn is to have cumulative hazard function Ay (y) then

exp (-Ay(y)) = Sy(y) = Sx (g-'(y)) =

Hence
g-e(y) = Ay(y). 

(20)

Note also that if g is decreasing then -g is increasing so we need consider only

increasing transformations.

The bivariate distribution of any two observations may be obtained from

(13) and is given by the joint survivor function

Syn,yni(Y , X) = Sy [max {,g(g( (yKi)]sy) (21)

Sy (g (g- (y)/ Kj))

Again, this bivariate distribution is mixed with probability given by ( 14), i.e.

pj = P(g-1 (Y.) = K'g- 1(Yn_ )) distributed on the curveYn = g [Kig-' (Y.-)],

11



and the remaining (1 - pi) distributed over Y. <g [Kig- 1 (Yb-,)] by means of

the survivor function (21). When g is monotonic decreasing we replace survivor

functions by distribution functions in (21).

We can derive the autocorrelation function for {Y,) from first principles in

the same way as for fX,). However, we can also relate the moments of the

transformed series to those of the original negative exponential. For example,

E(Y.Y-I) = E I{g(X) [9 (KX)Sz(X) + fo g(Kz)fz(z)dz] (22)

which, when g(O) is finite, can be simplified to

E(Y.Y 1 ) E {g(X) [9 (0) + K fo 9'(Kz)Sz(z)dz] } (23)

where X is negative exponential of unit mean, and Sz(z) = - (K - 11 .

6 Examples of the Transformation Process

(i) Y,. = - In X,, so that Y. has the extreme value or Gumbel (1) distribution

with distribution function e- '. Note that g is monotonic decreasing and

so the process is defined by

Y. = max (Y.-i,W.) +b,

where b = -In K. In addition, the innovation process {W,.} is also an

extreme value random variable. This is exactly the process introduced by

Tavares (1977) and examined in some hydrological contexts. He was unable

to specify the autocorrelation function then but noted it appeared to be

exponential. An examination of ( 22) suggest it would be very difficult to

obtain in closed form.

12



(ii) Y" = X" r, > 0, so that Y,, is Weibull with parameter sc. We find that

the process is defined by (16), i.e.

Y. = K/ l min (Y.-i, W.)

This is in effect the Weibull process discussed by Sim (1986), and in an

earlier example in this paper.

(iii) Y4 = X,-,'", ic > 0, so that Y is the second type of extreme value

distribution (Johnson and Kotz, 1970, Ch.21) with distribution function

Fy(y) = exp (-y-) y > 0. The process is defined by

Y. = K -'max (Y.- 1,W.) .

but again the autocorrelation appears unobtainable in closed form.

(iv) Y,, = 1 - e-Xn, so that Y is now uniformly distributed on (0,1). Here, we

have g-(y) = - In(1 - y) and the transformation is an increasing one, so

that (9) may be used directly to show that

Y = min( - (I - )K, I -(1 Wn)K)

where W,, has survival function Sw(w) = (1 - w)K - l. The formulation

may be simplified by using the decreasing transformation Yn = • - xe, in

which case we obtain

Yn = max (Yi 1, U' /(K- 1)), (24)

where U,, is uniformly distributed on (0,1). Both processes share the same

autocorrelation function and application of ( 23) yields it in the form

3

PX()=3)2  ,l (25)
p()-2Kj + 1"'25

(v) The uniform process of (iv) is important also because we may use it to

generate any other marginal distribution by means of the inverse distribu-

tion function transformation. Thus, if Y is to have distribution function

13



Fy (X) we can generate the process using the transformation

Y" = F 1 (1 - eXi). (26)

Now, g-I(z) - nSy (z), and we note that this is the cumulative hazard

function of Y. Note that ( 26) is a monotone increasing transformation so

that all the results (19) - (23) may be applied directly. In particular, note

that if ( 23) is applicable it may be written in the form

E (Y.Y.-, 1 ) = E {(X) [9(O)+ fe:(O (SY(Y))- I ] }

where

g(x) = F 1(1 - e-).

Note also that the results (19) - (23) hold when (Y.1 is a transformed

version of (X,,}, given by Yn = g(Xn), given only that (Xn} is a minifi-

cation process satisfying (7). We have considered the case where (X.) is

the negative exponential process but, in fact, (Xn) may be any minifica-

tion process and (19) - (23) still hold with obvious modifications to the

comments immediately after (23). In particular, it may well be simpler

to choose (X,,} to be uniform on (0,1) and then take g(x) = F 1 (z). We

have specified two distinct uniform minimum processes in this paper and

either may be used in this way, although the first, example (ii) of Section

4, is much simpler to implement.

As an example of such a procedure we consider the distribution of example

(i) of Section 4. We noted that for Ke(l, 3) no minification process exists

with this marginal distribution . We show here how to derive a suitably

transformed process beginning with the uniform minification process of

example (ii) in Section 4. Now, g(z) = Fj 1(z), i.e.

2z 0 < z < 0.5
10z-4 0.5<X< 1.
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For simplicity, we take K = 2, in which case g [Kg-'(z)] = g(z) and so

the process is given by

V. = min (Y.-_1,W.)

with
2V 0O< V, <0.5Y= IOV - 4 0.5 < vn<1,

where W,, = 2Zn = 2U,/(1 + UJ), from example (ii) of Section 4, and U

is uniform on (0,1).

7 Maximum Processes

We may define a maximum process {Xn} in exactly the same way as the mini-

fication process of (7). We use

X. = a max (X.-1, Z.) 0 < a < 1 (27)

and now the analog of (8) replaces survival functions by distribution functions

and an argument similar to the one about K shows ac(0, 1). The discussion

goes through in an exactly analogous fashion but is somewhat less elegant since

there is no natural interpretation of the analogue of the hazard rate when using

distribution functions. Nevertheless, most results are duplicated with survivor

functions replaced by distribution function. For example, the analog of (17) is

exactly the same with Sz(z) replaced by Fz(z) = P(Z : z).

As a simple example we present the uniform maximum process. Since

Fz(z) = Fx(az)/Fx(z) it follows that

Z { 0) with probability a (28)a+ (I - a)U with probability I - ck

where U is uniform on (0,1). We may also derive the autocorrelation function

for this process and it is in the geometric form of an AR(1). In particular

PX(j) = 2  = 0, 1, (29)

15



Note, however, that because of the special mixed form of Z, we can rewrite the

process ( 27) in the form

{, X-I with probability aX. = (30)
,'=Ia+ (1 - a)U. with probability I - a

Obviously this result is specific to the uniform maximum but it serves to illus-

trate the differences which can arise between maximum and minimum processes.

8 Numerical Example: Three Uniform Processes

Three uniform autoregressive process have been derived in this paper. The first

is the minification process (ii) of Section 4, with px(J) = (1/K)j, j = 0,1.

The second uniform process is the transformation process given as example (iv)

of Section 6, with correlation given in ( 25) as pX(1) = 3/(2Kj + 1). The third

uniform process given is the maximum process given in Section 7 with Z given

at (28).

Sample paths are shown for these three processes in Figure 1. All three

are generated from the same uniform i.i.d sequence U,, n = 0, 1,..., 100. Also

all three have the same value for px(1), namely 0.9. This means that for the

minification process K = 1/px(1) = 1/(0.9), but for the transformation pro-

cess K = 7/6. For the third process a = (0.9)0.5, from (29). Note also that

the marginal distributions are uniform and therefore bounded by zero and one,

unlike most time series for which sample paths or data are exhibited.

In the top panel of Figure 1, we see the typical "runs up" or "run off" behavior

of a minification process. Again the middle panel shows that the transformation

process exhibits "runs down", with the runs being convex down when they start

at high values, and convex up when they start at low values. Note particularly

the very slow decay at the end of the series when the process has very high values.

In the third panel, the maximum uniform process shows very long geometric

decays and has a very odd, persistent appearance.

16



Figure 2 shows the autocorrelation functions of the transformation and the

minification uniform processes. The function Px(j) for the minification process

is less than the function px(j) for the transformation process. In fact, for large

j, pX (j) for the transformation process has value approximately one and half

times that of the autocorrelation px(i) for the rminification process.
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